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Abstract—Here we construct continuously differentiable approxi-
mation using middle and left basis integro-differential splines of fifth
order. The goal of this work is the presentation of some new formulas
which are useful for the approximation of the functions with one and
two variables. Here we construct the basic one-dimensional polyno-
mial and trigonometrical integro-differential splines of the fifth order
approximation. For each interval we construct the approximation
separately. In order to construct the approximation in each interval
we need the values of the function, its first derivative in the points
of interpolation, and the value of the integral of the function over
the interval. If we don’t know the values of the first derivative of the
function in the points of interpolation and/or the value of the integral
of the function over the interval then we use the expressions which
were obtained for this instance and the error of the approximation
will be of the fifth order. The one-dimensional case can be extended
to multiple dimensions through the use of the tensor product spline
constructs. The examples of the approximations functions of two
variables are included. The spline approximation schemes discussed
in this paper allow us to control the effect of knot placement on the
accuracy of spline approximation. Numerical examples are presented.

Keywords—Integro-Differential Splines, Interpolation, Polyno-
mial splines, Trigonometrical splines.

I. INTRODUCTION

NOWADAYS splines are widely used for solving vari-
ous mathematical problems. A great deal of research

has been devoted to the application of various splines with
different properties for approximation and estimation of data.
Special attention is given to methods of constructing images
[1]–[12]. When using splines to construct approximations for
each interval we are not constrained by the basic limitation
of single polynomial approximation — namely the Runge
phenomenon as it has previously been established [14]. This
method of approximation using polynomial splines is widely
used for the interpolation and approximation of discrete data.
As is well known, the one-dimensional case can be extended
to multiple dimensions through the use of the tensor product
spline constructs. [13]–[15].

Kireev V.I. (in 1993) became the first to use values of
one-variable integrals of a function over subintervals for the
construction of approximations. Recently, many researchers
have devoted much attention to construct integro splines [16]–
[24].

This paper takes as its topic the investigation of cases in
which both the values of the function and its first derivative
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are known at the ends of each subinterval. In addition, values
of the integrals over the subintervals are known. Polynomial
and nonpolynomial splines of one variable were constructed
by the authors of the paper in [26]–[28].

Suppose that n,m are natural numbers, while a, b, c, d are
real numbers, h = (b− a)/n, hy = (d− c)/m. We can build
the grid of interpolation nodes xj = a + jh, j = 0, 1, . . . , n,
yk = c+ khy , k = 0, 1, . . . ,m.

Let us consider a rectangular domain Ω, where

Ω = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}.

We introduce a mesh of lines on Ω which divides the domain
Ω into the rectangles Ωj,k:

Ωj,k = {(x, y)|x ∈ [xj , xj+1], y ∈ [yk, yk+1]}.

II. MIDDLE POLYNOMIAL SPLINES OF ONE VARIABLE

Let the function u(x) be such that u ∈ C5([a, b]).
Suppose that we know u(xj), u′(xj), j = 0, 1, . . . , n, and∫ xj+1

xj
u(t)dt, j = 0, . . . , n− 1.

We denote by ũ(x) an approximation of the function u(x)
on the interval [xj , xj+1] ⊂ [a, b]:

ũ(x) = u(xj)ωj,0(x) + u(xj+1)ωj+1,0(x)+

u′(xj)ωj,1(x) + u′(xj+1)ωj+1,1(x)+

+

xj+1∫
xj

u(t)dt ω<0>
j (x). (1)

The basic splines ωj,0(x), ωj+1,0(x), ωj,1(x), ωj+1,1(x),
ω<0>
j (x), we obtain from the system:

ũ(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5. (2)

Suppose that suppωk,α = [xk−1, xk+1], α = 0, 1,
suppω<0>

k = [xk, xk+1]. We have for x = xj + th, t ∈ [0, 1],
the next formulas:

ωj,0(xj + th)=− 18 t2 + 32 t3 − 15 t4 + 1, (3)

ωj+1,0(xj + th)=− 12 t2 + 28 t3 − 15 t4, (4)

ωj,1(xj + th)=− (9/2)h t2 + 6h t3 − (5/2)h t4 + t h, (5)

ωj+1,1(xj + th)=(3/2)h t2 − 4h t3 + (5/2)h t4, (6)

ω<0>
j (xj + th)=(30 t2 − 60 t3 + 30 t4)/h. (7)

Fig. 1, 2, 3 show the graphics of the basic functions ωj,0(x),
ωj+1,0(x), ωj,1(x), ω′

j+1,1(x), ω
<0>
j (x), when h = 1. Fig. 3

(b) shows the error of approximation of the Runge function
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Fig. 1. Plots of the basic functions: (a) ωj,0(x); (b) ωj+1,0(x)

(a)

–0.04

–0.02

0

0.02

0.04

0.06

0.2 0.4 0.6 0.8 1t

(b)

–0.06

–0.04

–0.02

0

0.02

0.04

0.2 0.4 0.6 0.8 1t

Fig. 2. Plots of the basic functions: (a) ωj,1(x), when h = 1; (b) ωj+1,1(x),
when h = 1

u(x) = 1/(1 + 25x2) with the polynomial splines, h = 0.1,
x ∈ [−1, 1].

From (1), (2), (3)–(7) we have

ωj,0(xj + th)=


(5t+ 1)(1− 3t)(t− 1)2, t ∈ [0, 1],

(3t+ 1)(1− 5t)(1 + t)2, t ∈ [−1, 0],

0, t /∈ [−1, 1],

ωj,1(xj + th)=


−1

2 th(5t− 2)(t− 1)2, t ∈ [0, 1],
1
2 th(2 + 5t)(1 + t)2, t ∈ [−1, 0],

0, t /∈ [−1, 1],

ω<0>
j (xj + th) =

{
30t2

h (t− 1)2, t ∈ [0, 1],

0, t /∈ [0, 1].

It is easy to see that ωk,0, ωk,1, ω
<0>
k ∈ C1(R1).

Let us take Ũ(x), x ∈ [a, b], such that Ũ(x) = ũ(x), x ∈
[xj , xj+1]. Let ∥u∥[a,b] = max

[a,b]
|u(x)|.

Theorem 1 Let function u(x) be such that u ∈ C5([a, b]).
For approximation u(x), x ∈ [xj , xj+1] by (1), (2) – (7) we
have ũ ∈ C1(R1),

|ũ(x)− u(x)|[xj ,xj+1] ≤ K1h
5∥u(5)∥[xj ,xj+1], (8)

K1 = 0.0138,

|ũ′(x)− u′(x)|[xj ,xj+1] ≤ K2h
4∥u(5)∥[xj ,xj+1], (9)

K2 = 0.125,

|Ũ(x)− u(x)|[a,b] ≤ K1h
5∥u(5)∥[a,b], K1 = 0.0138, (10)

Proof: Inequality (8) follows from Taylor’s theorem and the
inequalities:
|ωj,0(x)| ≤ 1, |ωj+1,0(x)| ≤ 1,
|ωj,1(x)| ≤ 0.06779h, |ωj+1,1(x)| ≤ 0.06779h,
|ω<0>

j (x)| ≤ 1.875/h.
Inequality (10) follows from (8).
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Fig. 3. Plots of the basic functions: (a) ω<0>
j (x), when h = 1, and (b) the

error of approximation of the Runge function with the polynomial splines,
h = 0.1, x ∈ [−1, 1]

Inequality (9) follows from Taylor’s theorem and the inequal-
ities:

ω′
j,0(xj + th) = −12t(5t− 3)(t− 1)/h,

ω′
j+1,0(xj + th) = −12t(5t2 − 7t+ 2)/h,

ω′<0>
j (xj + th) = 60t(2t− 1)(t− 1)/h2,

ω′
j,1(xj + th) = −(t− 1)(10t2 − 8t+ 1),

ω′
j+1,1(xj + th) = t(3− 12t+ 10t2).

Let us take an irregular mesh of nodes. If x ∈ [xj , xj+1],
then xj+1 = xj + thj , where hj = xj+1−xj , t ∈ [0, 1]. Now
we can use the basic splines in the form:

ωj,0(xj + th) = −(1 + 5t)(−1 + 3t)(t− 1)2,
ωj+1,0(xj + th) = −t2(−2 + 3t)(−6 + 5t),
ωj,1(xj + th) = −(1/2)thj(5t− 2)(t− 1)2,
ωj+1,1(xj + th) = (1/2)t2hj(t− 1)(5t− 3),
ω<0>
j (xj + th) = (30t2)(t− 1)2/hj .

Fig. 3 (b) shows the error of the approximation of the Runge
function when x ∈ [−1, 1], xj+1 = xj + hj , hj = 0.1, j =
0, 1, . . . , n− 1, n = 20, here ∥u− Ũ∥[−1,1] = ε, ε = 0.207 ·
10−3. Our aim is to reduce n and receive the same or less
error of approximation.

We construct the approximation on every [xj , xj+1] sepa-
rately. The spline approximation scheme allows us to control
the effect of knot placement on the accuracy of spline approx-
imation. So we can change the stepsize hj = xj+1 − xj . To
improve the quality of the approximation we can choose the
nodes xj ∈ [a, b] as the follows. Beginning with an initial
stepsize of h0 = x1 − x0, we obtain xj+1 = xj + hj , where
hj we get from the relation:

Ij =

xj+hj∫
xj

√
1 + (u′(x))2 dx = I0, (11)

where I0 =

x1∫
x0

√
1 + (u′(x))2 dx.

Example 1a. Fig. 4 (a) shows the error of approximation of
the Runge function, x ∈ [−1, 1], with the polynomial splines,
when hj we obtain from (11), n = 15, h0 = 0.2, here ∥u −
Ũ∥[−1,1] = ε, ε = 0.00018. Fig. 4 (b) shows the error of
approximation of the Runge function, when hj we obtain from
(11), n = 15, h0 = 0.205, here ε = 0.000077.
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Fig. 4. Plots of the errors of approximation of the Runge function, hj we
obtain from (11), n = 15, when (a) h0 = 0.2, (b) h0 = 0.205

Example 1b. Fig. 5 show the error of the approximation of
the function sin(exp(3x)), x ∈ [−1, 1], when xj+1 = xj + h,
h = 1/50 (fig. 5 (a)), and when hj we obtain from (11),
j = 0, 1, . . . , 47, h0 = 0.28 (fig. 5 (b)).
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Fig. 5. Plots of the errors approximation of the function sin(exp(3x)), when
(a) xj+1 = xj + h, h = 1/50, n = 100, and (b) when h0 = 0.28, hj we
obtain from (11), n = 48

It is important to approximate the function well using a
spline with as few knots as possible. Fig. 3 (b) shows the
error of approximation of the Runge function, x ∈ [−1, 1],
when hi = 0.1, n = 20.

Example 2. Fig. 6 (a) shows the error of approximation
of the Runge function with the polynomial splines, when
h0 = 0.37, n = 10. Here hj we obtain using (11), j =
0, 1, 2, 7, 8, 9, and xj+1 = xj + hj , hj = h2/2, j = 3, 4, 5, 6,
∥u− Ũ∥[−1,1] = ε, ε = 0.000206. Fig. 6 (b) shows the error
of approximation of the Runge function with the polynomial
splines, when xj+1 = xj + hj , hj = 0.2, n = 10. Here
ε = 0.00248.
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Fig. 6. Plots of the errors of approximation of the Runge function, when
(a) n = 10, hi we obtain using (11), j = 0, 1, 2, 7, 8, 9, xj+1 = xj + hj ,
hj = h2/2, j = 3, 4, 5, 6, and (b) n = 10, xj+1 = xj + hj , hj = 0.2,

Fig. 7 (a) shows the error of approximation of the Runge
function with the polynomial splines, when h0 = 0.344,
n = 9. Here hj we obtain using (11), j = 0, 1, 2, 6, 7, 8, and

xj+1 = xj + hj , hj = 0.73h2, j = 3, 4, 5, ∥u− Ũ∥[−1,1] = ε,
ε = 0.000139. Fig. 7 (b) shows the error of approximation
of the Runge function with the polynomial splines, when
xj+1 = xj + hj , hj = 2/9, n = 9. Here ε = 0.00222.
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Fig. 7. Plots of the errors of approximation of the Runge function, n = 9,
when (a) hj we obtain using (11), j = 0, 1, 2, 5, 6, 7, 8, 9; xj+1 = xj +hj ,
hj = 0.7h2, j = 3, 4, and (b) xj+1 = xj + hj , hj = 2/9, j = 0, . . . , 8

Example 3. Fig. 8 (a) shows the error of approximation of
the Runge function with the polynomial splines, when x0 =
−1, x1 = −0.4107, x2 = −0.123, x3 = 0.123, x4 = 0.4107,
x5 = 1, Ik ≈ 0.617, k = 0, 1, 2, 3, 4, ∥u − Ũ∥[−1,1] = ε,
ε = 0.00361.

Fig. 8 (b) shows the error of approximation of the Runge
function with the polynomial splines, when x0 = −1, x1 =
−0.361, x2 = −0.1105, x3 = 0.1105, x4 = 0.361, x5 = 1,
I0 = I4 ≈ 0.683, I1 = I3 ≈ 0.593, I2 ≈ 0.532. Here ε =
0.00219.
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Fig. 8. Plots of the errors of approximation of the Runge function with
the polynomial splines, (a) when Ik ≈ 0.617, and (b) when Ik ≈ 0.683,
k = 0, 4; Ik ≈ 0.593, k = 1, 3; I2 ≈ 0.532

Example 4. Fig. 9 (a) shows the error of approximation of
the Runge function with the polynomial splines, when x0 =
−1, x1 = −0.310428, x2 = 0, x3 = 0.310428, x4 = 1,
I0 = I3 =≈ 0.7602, I1 = I2 ≈ 0.7817, ∥u − Ũ∥[−1,1] = ε,
ε = 0.00388.

Fig. 9 (b) shows the error of approximation of the Runge
function with the polynomial splines, when x0 = −1, x1 =
−0.30404, x2 = 0, x3 = 0.30404, x4 = 1, Ik ≈ 0.771,
k = 0, 1.2.3. Here ε = 0.00416.

On every line parallel to axis y, we can construct the
approximation in the form:

ũ(y) = u(yk)ωk,0(y) + u(yk+1)ωk+1,0(y)+

u′(yj)ωk,1(y) + u′(yk+1)ωk+1,1(y)+

+

yk+1∫
yk

u(t)dt ω<0>
k (y), y ∈ [yk, yk+1]. (12)
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Fig. 9. Plots of the errors of approximation of the Runge function with the
polynomial splines, when (a) Ik ≈ 0.7602, k = 0, 3; Ik ≈ 0.7817, k = 1, 2
, and (b) when Ik ≈ 0.771, k = 0, 1, 2, 3

Now we have the next formulas for y = yk + t1h, t1 ∈ [0, 1]:

ωk,0(yk + t1h) = −18 t21 + 32 t31 − 15 t41 + 1, (13)

ωk+1,0(yk + t1h) = −12 t21 + 28 t31 − 15 t41, (14)

ωk,1(yk+t1h)=−(9/2)h t21+6h t31−(5/2)h t41+t1 h, (15)

ωk+1,1(yk + t1h) = (3/2)h t21 − 4h t31 + (5/2)h t41, (16)

ω<0>
k (yk + t1h) = (30 t21 − 60 t31 + 30 t41)/h. (17)

If (x, y) ∈ Ωj,k then we get the next expression using the
tensor product:

ũ(x, y) =
1∑

i=0

1∑
p=0

u(xj+i, yk+p)ωj+i,0(x)ωk+p,0(y)+

+
1∑

i=0

1∑
p=0

u′
y(xj+i, yk+p)ωj+i,0(x)ωk+p,1(y)+

1∑
i=0

yk+1∫
yk

u(xj+i, t)dtdyωj+i,0(x)ω
<0>
k (y)

+
1∑

i=0

xj+1∫
xj

u(t, yk+i)dtω
<0>
j (x)ωk+i,0(y)+

+

1∑
i=0

xj+1∫
xj

u′
y(t, yk+i)dtω

<0>
j (x)ωk+i,1(y)+

yk+1∫
yk

xj+1∫
xj

u(x, y)dxdyω<0>
k (y)ω<0>

j (x)

+
1∑

i=0

u′
x(xj , yk+i)dtωj,0(x)ωk+i,0(y)+

+

1∑
i=0

u′′
xy(xj , yk+i)dtωj,0(x)ωk+i,1(y)+

+

yk+1∫
yk

u′
x(xj , t)dtωj,1(x)ω

<0>
k (y). (18)

A. Trigonometrical splines of one variable

We denote by ˜̃u(x) an approximation of the function u(x)
on the interval [xj , xj+1]:˜̃u(x) = u(xj)ω̃j,0(x) + u(xj+1)ω̃j+1,0(x)+

u′(xj)ω̃j,1(x) + u′(xj+1)ω̃j+1,1(x)+

+

xj+1∫
xj

u(t)dt ω̃<0>
j (x), x ∈ [xj , xj+1]. (19)

The basic splines ω̃j,0(x), ω̃j+1,0(x), ω̃j,1(x), ω̃j+1,1(x),
ω̃<0>
j (x), we obtain from the system:˜̃u(x) ≡ u(x), u(x) = 1, sin(kx), cos(kx), k = 1, 2. (20)

We have for x = xj + th, t ∈ [0, 1], the next formulas:
ω̃j,0(xj+th) = (6 sin(t h+h)−8 cos(t h)h+12h cos(t h+

h) − 4h cos(−3h + t h) + 15 sin(h) − 6 sin(2h + t h) +
6 sin(−2h + t h) + 3 sin(3h) − 12 sin(2h) + 3 sin(−3h +
2 t h)+2h cos(−3h+2 t h)+6h cos(−h+2 t h)+3 sin(h+
2 t h) − 6 sin(−h + 2 t h) − 8h cos(2 t h) − 6 sin(−3h +
t h))/(30 sin(h) − 24 sin(2h) − 16h + 18h cos(h) −
2h cos(3h) + 6 sin(3h)),

ω̃j+1,0(xj + th) = (3 sin(h+ 2 t h)− 6 sin(−h+ 2 t h) +
8h cos(t h− h)− 6h cos(−h+ 2 t h)− 2h cos(h+ 2 t h) +
6 sin(t h + h) + 12 sin(2h) − 3 sin(3h) − 15 sin(h) +
8h cos(2 t h − 2h) − 6 sin(−3h + t h) + 3 sin(−3h +
2 t h)−12h cos(−2h+ t h)+4h cos(2h+ t h)−6 sin(2h+
t h)+ 6 sin(−2h+ t h))/(−30 sin(h)+ 24 sin(2h)+ 16h−
18h cos(h) + 2h cos(3h)− 6 sin(3h)),

ω̃j,1(xj + th) = (10 + 6 cos(2h) − 2 cos(2 t h) −
4h sin(2 t h)−15 cos(h)−8 cos(t h)+5 cos(−3h+2 t h)+
6h sin(−h + 2 t h) − 2h sin(−3h + 2 t h) − 8h sin(t h) +
6 cos(−2h + t h) + 2 cos(2h + t h) − 4 cos(−3h + t h) +
4 cos(t h − h) + 12 cos(−h + 2 t h) − cos(h + 2 t h) −
14 cos(2 t h−2h)+6h sin(t h+h)−cos(3h)+2h sin(−3h+
t h))/(30 sin(h) − 24 sin(2h) − 16h + 18h cos(h) −
2h cos(3h) + 6 sin(3h)),

ω̃j+1,1(xj + th) = (10 + 6 cos(2h) + 2 cos(−3h+ t h)−
15 cos(h) − cos(3h) − 2h sin(2h + t h) − 6h sin(−2h +
t h) + 12 cos(−h + 2 t h) + 5 cos(h + 2 t h) − cos(−3h +
2 t h)+2h sin(h+2 t h)−6h sin(−h+2 t h)−2 cos(2 t h−
2h)− 14 cos(2 t h)− 4 cos(2h+ t h)+4h sin(2 t h− 2h)+
8h sin(t h − h) + 4 cos(t h) − 8 cos(t h − h) + 6 cos(t h +
h))/(−30 sin(h) + 24 sin(2h) + 16h − 18h cos(h) +
2h cos(3h)− 6 sin(3h)),

ω̃<0>
j (xj + th) = (8 + 6 cos(−h + 2 t h) + cos(h +

2 t h) − 9 cos(h) + cos(3h) − 4 cos(2 t h) − 2 cos(−3h +
t h) − 4 cos(2 t h − 2h) + cos(−3h + 2 t h) + 6 cos(−2h +
t h) − 2 cos(2h + t h) − 4 cos(t h − h) + 6 cos(t h + h) −
4 cos(t h))/(−15 sin(h) + 12 sin(2h) + 8h − 9h cos(h) +
h cos(3h)− 3 sin(3h)).

It can be shown that the next formulas are valid:
ω̃j,0(xj + th) = (1 + 32 t3 − 18 t2 − 15t4) +O(h2),
ω̃j+1,0(xj + th) = (28 t3 − 12 t2 − 15t4) +O(h2),
ω̃j,1(xj+th)=(6t3−(9/2)t2−(5/2)t4 + t)h+O(h3),
ω̃j+1,1(xj+th)=(−4t3+(3/2)t2+(5/2)t4)h+O(h3),
ω̃<0>
j (xj + th) = (−60t3 + 30t2 + 30t4)h−1 +O(h).
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Theorem 2 The error of the approximation by the splines
(19) is as follows:

|˜̃u(x)− u(x)| ≤ Kh5∥4u′ + 5u′′′ + uV ∥[xj ,xj+1], (21)

where x ∈ [xj , xj+1], K > 0.
Proof: The function u(x) on [xj , xj+1] can be written

in the form (see [26]): u(x) = 2
3

∫ x

xj
(4u′(τ)+ 5u′′′(τ) +

uV (τ)) sin4(x/2 − τ/2)dτ + c1 + c2 sin(x) + c3 cos(x) +
c4 sin(2x)+c5 cos(2x), where ci, i = 1, 2, 3, 4, 5 are arbitrary
constants. Using the method from [26] we obtain (21).

Fig. 10 (a) shows the error of approximation of the function
7 cos(2x) + 5 sin(x) when xj+1 = xj + hj , hj = 2/9, n = 9,
with the polynomial splines, here ε = 0.00000896. Fig. 10 (b)
shows the error of approximation of the function 7 cos(2x) +
5 sin(x) when xj+1 = xj + hj , hj = 2/9, n = 9, with the
trigonometrical splines, Digits = 25.
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–1 –0.5 0.5 1

Fig. 10. Plots of the errors of approximation of the function 7 cos(2x) +
5 sin(x) with the polynomial splines (a), and with the trigonometrical splines
(b)

Fig. 11 shows the error of approximation of the func-
tion 15 cos(2x) sin(exp(x)) with the polynomial splines, here
ε = 0.000677 (a) and with the trigonometrical splines, here
ε = 0.000579 (b), when xj+1 = xj + h, h = 2/9, n = 9,
Digits=25.
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Fig. 11. Plots of the errors of approximation of the function
15 cos(2x) sin(exp(x)) with the polynomial splines (a), and with the trigono-
metrical splines (b)

We denote by ˜̃u(y) an approximation of the function u(y) on
the interval [yk, yk+1]. The basic splines ω̃k,0(y), ω̃k+1,0(y),
ω̃k,1(y), ω̃k+1,1(y), ω̃<0>

k (y), we obtain from the system:˜̃u(y) ≡ u(y), u(y) = 1, sin(ky), cos(ky), k = 1, 2. (22)

If (x, y) ∈ Ωj,k then we use the expression (18), where
we take trigonometrical ω̃s,i(x), ω̃s,i(y), ω̃<0>

j (x), ω̃<0>
k (y)

instead of polynomial functions ωs,i(x), ωs,i(y), ω<0>
j (x),

ω<0>
j (y).

Let us take ˜̃U(x), x ∈ [a, b], such that ˜̃U(x) = ˜̃u(x), x ∈
[xj , xj+1].

Table 1 shows the error of the approximations ˜̃u(x, y) −
u(x, y) with the tensor product of the trigonometric splines
obtained from (20), (22) and the error of the approximations
ũ(x, y) − u(x, y) with the tensor product of the polynomial
splines of the functions

u1(x, y) =
cos(x) cos(y)

((1 + 25 sin2(x))(1 + 25 sin2(y)))
,

u2(x, y) =
xy

((1 + 25x2)(1 + 25y2))
,

where [a, b] = [−1, 1], [c, d] = [−1, 1], h = 0.1, y = 0.05.
Here RI = max

x∈[−1,1]
|Ũ − u|, RII = max

x∈[−1,1]
| ˜̃U − u|.

Calculations were done in Maple, Digits=25.

Table 1 The error of the approximations with the tensor
product

u(x, y) RI RII

u1(x, y) 0.70998e− 5 0.70395e− 5
u2(x, y) 0.48035e− 6 0.47316e− 6

III. METHOD 2

A. Left polynomial splines of one variable

Here we denote by ũ(x) an approximation of the function
u(x) in the interval [xj , xj+1]:

ũ(x) = u(xj)ωj,0(x) + u(xj+1)ωj+1,0(x)+

u′(xj)ωj,1(x) + u′(xj+1)ωj+1,1(x)+

+

xj∫
xj−1

u(t)dt ω<−1>
j (x). (23)

The basic splines ωj,0(x), ωj+1,0(x), ωj,1(x), ωj+1,1(x),
ω<−1>
j (x), we obtain from the system:

ũ(x) ≡ u(x), u(x) = xi−1, i = 1, 2, 3, 4, 5. (24)

We have for x = xj + th, t ∈ [0, 1], the following formulas:

ωj,0(xj+th)=(32/31)t3 − (78/31)t2+(15/31)t4+1, (25)

ωj+1,0(xj + th)=(48/31)t2+(28/31)t3−(45/31)t4, (26)

ωj,1(xj + th) = (h/62)(85t4 − 39t2 − 108t3 + 62t), (27)

ωj+1,1(xj + th) = (h/62)(35t4 − 27t2 − 8t3), (28)

ω<−1>
j (xj + th) = (1/31) (30 t2 − 60 t3 + 30 t4)/h, (29)

Fig. 12, 13, 14 (a) show the plots of the basic functions
ωj,0(x), ωj+1,0(x), ωj,1(x), ωj+1,1(x), ω<−1>

j (x), when h =
1. Fig. 14 (b) shows the error of approximation of the Runge
function u(x) = 1/(1 + 25x2) with the polynomial splines,
h = 0.1, x ∈ [−1, 1], ∥u− Ũ∥ = ε, ε = 0.00141.

To improve the quality of the approximation we can chose
the nodes xj ∈ [a, b] as the follows:
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Fig. 12. Plots of the basic functions: ωj,0(x) (a), ωj+1,0(x) (b)
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Fig. 13. Plots of the basic functions: ωj,1(x), when h = 1(a), ωj+1,1(x),
when h = 1 (b)

h−1 = x0 − x−1, xj+1 = xj + hj , where hj we obtain from
the relation:

xj+hj∫
xj

√
1 + (u′(x))2 dx =

x0∫
x0−h−1

√
1 + (u′(x))2 dx. (30)

Example 4. Fig. 15 (a) shows the error of approximation
of the Runge function with the polynomial splines, when
h−1 = 0.25, hj we obtain from (30), j = 0, 1, 3, 4, 12, 13, 14,
and hj = 0.8h4, j = 5, 6, 7, 8, 9, 10, 11, here ∥u − Ũ∥ = ε,
ε = 0.00019. Fig. 15 (b) shows the error of approximation
of the Runge function with the polynomial splines, when
h−1 = 0.151, hj we obtain from (30), j = 0, 1, . . . , 19, here
ε = 0.000203.

Theorem 3 Let function u(x) be such that u ∈ C5([a, b]).
For the approximation u(x), x ∈ [xj , xj+1] by (23) – (29) we
have

|ũ(x)− u(x)|[xj ,xj+1] ≤ K3h
5∥u(5)∥[xj−1,xj+1], (31)

K3 = 0.0135,

|ũ′(x)− u′(x)|[xj ,xj+1] ≤ K4h
4∥u(5)∥[xj−1,xj+1], (32)

K4 = 0.064,

|Ũ(x)− u(x)|[a,b] ≤ K3h
5∥u(5)∥[a,b], K3 = 0.0135, (33)

Proof: Inequality (31) follows from Taylor’s theorem and
|ωj,0(x)| ≤ 1, |ωj+1,0(x)| ≤ 1,
|ωj,1(x)| ≤ 0.223h, |ωj+1,1(x)| ≤ 0.1223h,
ω<−1>
j (x)| ≤ 0.0605/h.

Inequality (33) follows from (31).
Inequality (32) follows from Taylor’s theorem and
|ω′

j,0(x)| ≤ 1.51/h, |ω′
j+1,0(x)| ≤ 1.58/h,

|ω′
j,1(x)| ≤ 1, |ω′

j+1,1(x)| ≤ 1,
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Fig. 14. Plots of the basic functions: ω<−1>
j (x), when h = 1 (a), and the

error of approximation of the Runge function with the polynomial splines,
h = 0.1, x ∈ [−1, 1] (b)
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Fig. 15. Plots of the error of approximation of the Runge function
with the polynomial splines: (a) h−1 = 0.25, hj we obtain from (30),
j = 0, 1, 3, 4, 12, 13, 14; hj = 0.8h4, j = 5, 6, 7, 8, 9, 10, 11, and (b)
h−1 = 0.151, hj we obtain from (30), j = 0, . . . , 19

|ω′<−1>
j (x)| ≤ 1.187/h2.

If (x, y) ∈ Ωj,k then we put the approximation in the form
of the tensor product:

ũ(x, y) =
1∑

i=0

1∑
p=0

u(xj+i, yk+p)ωj+i,0(x)ωk+p,0(y)+

+
1∑

i=0

1∑
p=0

u′
y(xj+i, yk+p)ωj+i,0(x)ωk+p,1(y)+

1∑
i=0

yk∫
yk−1

u(xj+i, t)dtdyωj+i,0(x)ω
<−1>
k (y)

+
1∑

i=0

xj∫
xj−1

u(t, yk+i)dtω
<−1>
j (x)ωk+i,0(y)+

+
1∑

i=0

xj∫
xj−1

u′
y(t, yk+i)dtω

<−1>
j (x)ωk+i,1(y)+

yk∫
yk−1

xj∫
xj−1

u(x, y)dxdyω<−1>
k (y)ω<−1>

j (x)

+

1∑
i=0

u′
x(xj , yk+i)dtωj,0(x)ωk+i,0(y)+

+
1∑

i=0

u′′
xy(xj , yk+i)dtωj,0(x)ωk+i,1(y)+
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+

yk∫
yk−1

u′
x(xj , t)dtωj,1(x)ω

<−1>
k (y), (34)

where

ωk,0(yk+t1h)=− 78

31
t21 +

32

31
t31 +

15

31
t41 + 1, (35)

ωk+1,0(yk + t1h)=
48

31
t21+

28

31
t31−

45

31
t41, (36)

ωk,1(yk+t1h)=− 39

62
ht21−

54

31
ht31+

85

62
ht41+t1h, (37)

ωk+1,1(yk + t1h)=− 27

62
h t21 −

4

31
h t31 +

35

62
h t41, (38)

ω<−1>
k (yk + t1h)=

1

31
(30 t21 − 60 t31 + 30 t41)/h. (39)

B. Trigonometrical splines of one variable

We denote by ˜̃u(x) an approximation of the function u(x)
on the interval [xj , xj+1]:˜̃u(x) = u(xj)ω̃j,0(x) + u(xj+1)ω̃j+1,0(x)+

u′(xj)ω̃j,1(x) + u′(xj+1)ω̃j+1,1(x)+

+

xj∫
xj−1

u(t)dt ω̃<−1>
j (x), x ∈ [xj , xj+1]. (40)

The basic splines ω̃j,0(x), ω̃j+1,0(x), ω̃j,1(x), ω̃j+1,1(x),
ω̃<1>
j (x), we obtain from the system:˜̃u(x) ≡ u(x), u(x) = 1, sin(kx), cos(kx), k = 1, 2. (41)

We get from (41) and x = jh+ th, t ∈ [0, 1], the following
formulas:
ω̃j,0(xj + th) = (4 sin(2h) − sin(h) − 6 sin(3h) +

4 sin(4h)− sin(5h)− 8 sin(3h+ t h) + 2 sin(−3h+ t h)−
2 sin(2 t h+h)−sin(2 t h−h)−sin(3h+2 t h)+4 sin(−3h+
2 t h) − 2 sin(t h + h) + 8 sin(t h − h) + 2 sin(4h + t h) −
6 sin(−2h + t h) + 6 sin(2h + t h) − 2 sin(−4h + t h) +
4 sin(2 t h+2h)−4 sin(2 t h−2h)+2h cos(−3h+2 t h)+
6h cos(2 t h − h) + 12h cos(t h + h) − 4h cos(−3h +
t h) − 8h cos(t h) − 8h cos(2 t h))/(−16h + 24 sin(2h) −
12 sin(h) − 21 sin(3h) + 8 sin(4h) + 18h cos(h) −
2h cos(3h)− sin(5h)),
ω̃j+1,0(xj + th) = (4 sin(4h) − 8h cos(t h − h) +

20 sin(2h) + 2 sin(2 t h+ h) + sin(2 t h− h)− 4 sin(2 t h+
2h)+4 sin(2 t h−2h)+12h cos(−2h+t h)−4h cos(2h+
t h) − 8h cos(2 t h − 2h) + sin(3h + 2 t h) − 4 sin(−3h +
2 t h)−15 sin(3h)−11 sin(h)+8 sin(3h+t h)−2 sin(−3h+
t h)+6h cos(2 t h−h)+2h cos(2 t h+h)−2 sin(4h+t h)+
2 sin(−4h+t h)+2 sin(t h+h)−8 sin(t h−h)−6 sin(2h+
t h)+ 6 sin(−2h+ t h))/(−16h+24 sin(2h)− 12 sin(h)−
21 sin(3h) + 8 sin(4h) + 18h cos(h) − 2h cos(3h) −
sin(5h)),
ω̃j,1(xj + th) = (16− 2 cos(2h)− 17 cos(h)− cos(5h) +

2 cos(3h) + 6 cos(−3h + 2 t h) + 13 cos(2 t h − h) +
12 cos(t h + h) − 8 cos(t h) − 8 cos(2 t h) − 6 cos(t h −
h) + 6 cos(−2h + t h) + 2 cos(2h + t h) − 10 cos(2 t h −
2h)− 2 cos(2 t h+ h) + 2 cos(4h+ t h)− cos(3h+2 t h)−

7 cos(3h+ t h) + 4 cos(2 t h+ 2h)− 2 cos(−4h+ 2 t h) +
cos(−5h+t h)−2 cos(−4h+t h)+2 cos(4h)−6h sin(t h+
h)− 2h sin(−3h+ t h) + 8h sin(t h)− 6h sin(2 t h− h) +
2h sin(−3h + 2 t h) + 4h sin(2 t h))/(16h − 24 sin(2h) +
12 sin(h) + 21 sin(3h) − 8 sin(4h) − 18h cos(h) +
2h cos(3h) + sin(5h)),

ω̃j+1,1(xj + th) = (14 cos(2h)− 7 cos(h)− 9 cos(3h) +
2 cos(−3h + 2 t h) + 3 cos(2 t h − h) − 10 cos(t h + h) +
2 cos(−3h + t h) + 6 cos(t h) − 6 cos(2 t h) + 4 cos(t h −
h) − 4 cos(−2h + t h) − 4 cos(2 t h − 2h) + 10 cos(2 t h +
h) − cos(4h + t h) + cos(3h + 2 t h) + 4 cos(3h +
t h) − 6 cos(2 t h + 2h) − cos(−4h + t h) + 2 cos(4h) +
6h sin(2 t h − h) + 2h sin(2h + t h) + 6h sin(−2h +
t h)− 4h sin(2 t h− 2h)− 8h sin(t h− h)− 2h sin(2 t h+
h))/(−16h + 24 sin(2h) − 12 sin(h) − 21 sin(3h) +
8 sin(4h) + 18h cos(h)− 2h cos(3h)− sin(5h)),

ω̃<−1>
k (xj + th) = (−16 − 2 cos(−3h + 2 t h) −

2 cos(2 t h+h)−12 cos(2 t h−h)−2 cos(3h)+8 cos(t h)+
18 cos(h)+4 cos(−3h+ t h)−12 cos(t h+h)+8 cos(t h−
h) + 8 cos(2 t h − 2h) + 8 cos(2 t h) − 12 cos(−2h +
t h) + 4 cos(2h + t h))/(−16h + 24 sin(2h) − 12 sin(h) −
21 sin(3h) + 8 sin(4h) + 18h cos(h) − 2h cos(3h) −
sin(5h)).

It can be shown that the next relations are valid:
ω̃j,0(xj+ th) = (1+(32/31)t3− (78/31)t2+(15/31)t4)+

O(h2),
ω̃j+1,0(xj + th) = ((28/31)t3 + (48/31)t2 − (45/31)t4) +

O(h2),
ω̃j,1(xj+th) = (t−(54/31)t3−(39/62)t2+(85/62)t4)h+

O(h3),
ω̃j+1,1(xj+th) = ((−4/31)t3−(27/62)t2+(35/62)t4)h+

O(h3),
ω̃<−1>
k (xj + th) = (−(60/31)t3 + (30/31)t2 +

(30/31)t4)h−1 +O(h).
Fig. 16 shows the error of approximation of the function

7 cos(2x) + 5 sin(x): (a) with the polynomial splines, here
ε = 0.00176, and (b) with the trigonometrical splines, when
xj+1 = xj + h, h = 2/9, n = 9, Digits = 25.
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Fig. 16. Plots of the errors of approximation of the function 7 cos(2x) +
5 sin(x): (a) with the polynomial splines, and (b) with the trigonometrical
splines

Fig. 17 shows the error of approximation of the function
15 cos(2x) sin(exp(x)): (a) with the polynomial splines, here
ε = 0.00519, and (b) with the trigonometrical splines, here
ε = 0.00425, when xj+1 = xj + hj , hj = 2/9, n = 9.

Fig. 18 shows the approximation of the function ((sin(x−
y) cos(x−y)) and the error of its approximation, where we use
the middle polynomial splines, h = 0.2, Ω = [−1, 1]× [−1, 1].
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Fig. 17. Plots of the errors of approximation of the function
15 cos(2x) sin(exp(x)): (a) with the polynomial splines, and (b) with the
trigonometrical splines
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Fig. 18. Plots of the approximation of the function ((sin(x−y) cos(x−y))
with the middle polynomial splines (left), the error of its approximation with
the polynomial splines (right), here h = 0.2, Ω = [−1, 1]× [−1, 1]

Fig. 19 shows the approximation of the function
x exp(−x2 − y2) with the middle polynomial splines and the
error of the approximation, where h = 0.2, Ω = [−1, 1] ×
[−1, 1].
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Fig. 19. Plots of the approximation of the function x exp(−x2 − y2) by
the polynomial splines (a), the error of its approximation with the middle
polynomial splines (b), here h = 0.2, Ω = [−1, 1]× [−1, 1]

Fig. 20 shows the approximation with the middle polyno-
mial splines of the function u3(x, y) = 1/((1 + 25x2)(1 +
25y2)) and the error of the approximation, where h = 0.2,
Ω = [−1, 1]× [−1, 1].

IV. DISCRETE VERSION OF POLYNOMIAL
INTEGRO-DIFFERENTIAL SPLINES

Consider the solution to the problem of finding some
approximating function that describes an experimental law of
a distribution using the proposed polynomial splines.

We use the quadrature formula for the approximate calcu-
lation of the integrals in (23) and in (1):

xk+1∫
xk

u(x)dx =
3

5
hu(xk) +

2

5
hu(xk+1) +

3

20
h2u′(xk)

(a)
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Fig. 20. Plots of the approximation of the function u3 = 1/((1+25x2)(1+
25y2)) (a), and the error of approximation of the function u3 (b), here h =
0.2, Ω = [−1, 1]× [−1, 1]

−h2

20
u′(xk+1) +

h3

60
u′′(xk) +O(h5),

xk∫
xk−1

u(x)dx =
3h

5
u(xk−1) +

2h

5
u(xk)+

3h2

20
u′(xk−1)−

h2

20
u′(xk)+

h3

60
u′′(xk−1)+O(h5),

and use formulas for numerical differentiation if k =
2, 3, . . . , n− 2,

u′′(xk) =
1

24h2
(−2u(xk−2)+

32u(xk−1)− 60u(xk) + 32u(xk+1)− 2u(xk+2)) +O(h6);

u′(xk) =
1

12h
(u(xk−2)− 8u(xk−1)+

8u(xk+1)− u(xk+2)) +O(h5).

For k = 0, 1

u′′(xk)=
1

24h2
(70u(xk)−208u(xk+1)

+228u(xk+2)− 112u(xk+3) + 22u(xk+4)) +O(h5),

u′(xk) =
1

12h
(−25u(xk) + 48u(xk+1)

−36u(xk+2) + 16u(xk+3)− 3u(xk+4)) +O(h5);

for k = n− 1, n

u′′(xk) =
1

24h2
(70u(xk)− 208u(xk−1)+

228u(xk−2)− 112u(xk−3) + 22u(xk−4)) +O(h5),

u′(xk) =
1

12h
(25u(xk)− 48u(xk−1)+

36u(xk−2)− 16u(xk−3) + 3u(xk−4)) +O(h5).

Table 2 shows the actual errors of the approximation function
and their first derivatives with the left integro-differential
splines. Here R̃L is the actual error of the approximation
function and R̃L

1 is the actual error of the approximation’s
first derivative in a case in which we only have the values of
the function u(xk), k = 0, . . . , n, x ∈ [−1, 1], h = 0.1.

Table 3 shows the theoretical errors R̃TL of the approxima-
tion function and its first derivative R̃TL

1 with the left integro-
differential splines.
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Table 2 The actual errors of the approximation function and
its first derivative, h = 0.1

No u(x) R̃L R̃L
1

1 sin(3x) cos(5x) 0.22 · 10−3 0.73 · 10−2

2 tg(x) 0.32 · 10−4 0.10 · 10−2

3 cos(2x) 0.49 · 10−6 0.16 · 10−4

4
1

(1 + 25x2)
0.12 · 10−2 0.45 · 10−1

Table 3 The theoretical errors of the approximation
functions, h = 0.1

No u(x) R̃TL R̃TL
1

1 sin(3x) cos(5x) 0.36 · 10−2 0.10
2 tg(x) 0.76 · 10−3 0.22 · 10−1

3 cos(2x) 0.70 · 10−5 0.20 · 10−3

4
1

(1 + 25x2)
0.69 · 10−1 1.98

In [30] noted that “in practice, the use of a probabilistic
approach to the evaluation of errors of measurement results
primarily assumes the knowledge of the analytical model of
the distribution law of the considered error. Occurring in
metrology distributions diverse enough”. A large part of these
distributions are bimodal.

Fig. 21 (a) shows the histogram, the density distribution
and the approximation with the left polynomial splines of the
density of bimodal distribution f = (f1 + f2)/2, where

fi =
1√
2πσi

e−(x−αi)
2/(2σ2

i ),

i = 1, 2, σ1 = 0.5, σ2 = 0.8, α1 = −0.8, α2 = 1, by the left
polynomial splines of the interval [−2, 3]. Fig. 21 (b) shows
the error of the approximation of the density of distributions

(a)

0

0.1

0.2

0.3

0.4

–2 –1 1 2 3x

(b)

–4e–05

–2e–05

0

2e–05

4e–05

–2 –1 1 2 3

Fig. 21. The histogram, the density distribution and the approximation of
the density distribution (a); the errors of the approximation of the density
distributions (b)

Fig. 22 (a) shows the histogram, the density distribution and
the approximation of the density distribution

f0 =
1√
2πσ

e(
−(x−α)2

2σ2 ), where σ = 0.5, α = 0

of the interval [−2, 2].
Fig. 22 (b) shows the error of the approximation of the

density of distributions

(a)

0

0.2

0.4

0.6

0.8

–2 –1 1 2
x

(b)

–3e–05

–2e–05

–1e–05

1e–05

2e–05

3e–05

–2 –1 1 2

Fig. 22. The histogram, the density distribution and the approximation of the
density distribution f0 (a), and the error of the approximation of the density
of distributions (b)

V. CONCLUSION

We can take as an approximation of the functions of two
variables in the form of the tensor product of polynomial
splines in one direction and trigonometric splines in other
direction if it is necessary to improve the properties of the
approximation.
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